网站首页

产品中心

智能终端处理器 智能云服务器 软件开发环境

新闻中心

关于尊龙凯时·(中国)人生就是搏!

公司概况 核心优势 核心团队 发展历程

联系尊龙凯时·(中国)人生就是搏!

官方微信 官方微博
主页 > 新闻中心

AI芯片最尊龙凯时中国官方网站强科普

发布时间:2024-06-10 12:09浏览次数: 来源于:网络

  尊龙凯时中国官方网站AI的许多数据处理涉及矩阵乘法和加法。AI算法,在图像识别等领域,常用的是CNN;等领域,主要是RNN,这是两类有区别的算法;但是,他们本质上,都是矩阵或vector的乘法、加法,然后配合一些除法、指数等算法。

  CPU可以拿来执行AI算法,但因为内部有大量其他逻辑,而这些逻辑对于目前的AI算法来说是完全用不上的,所以,自然造成CPU并不能达到最优的性价比。因此,具有海量并行计算能力、能够加速AI计算的AI芯片应运而生。

  一般的说,AI芯片被称为AI加速器或计算卡,即专门用于加速AI应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。

  而从广义范畴上讲,面向AI计算应用的芯片都可以称为AI芯片。除了以GPU、FPGA、ASIC为代表的AI加速芯片(基于传统芯片架构,对某类特定算法或者场景进行AI计算加速),还有比较前沿性的研究,例如类脑芯片、可重构通用AI芯片等(但距离大规模商用还有较长距离)。

  以GPU、FPGA、ASIC为代表的AI芯片,是目前可大规模商用的技术路线,是AI芯片的主战场,本文以下主要讨论的就是这类AI芯片。

  AI芯片部署的位置有两种:云端、终端。所以根据部署的位置不同,AI芯片可以分为:云AI芯片、端AI芯片。

  云端,即数据中心,在深度学习的训练阶段需要极大的数据量和大运算量,单一处理器无法独立完成,因此训练环节只能在云端实现。

  终端,即手机、安防摄像头、汽车、智能家居设备、各种IoT设备等执行边缘计算的智能设备。终端的数量庞大,而且需求差异较大。

  云AI芯片的特点是性能强大、能够同时支持大量运算、并且能够灵活地支持图片、语音、视频等不同AI应用。基于云AI芯片的技术,能够让各种智能设备和云端服务器进行快速的连接,并且连接能够保持最大的稳定。

  端AI芯片的特点是体积小、耗电少,而且性能不需要特别强大,通常只需要支持一两种AI能力。

  相比于云AI芯片来说,端AI芯片是需要嵌入进设备内部的,当在设备内部中嵌入了端AI芯片之后,能够让设备的AI能力进一步提升,并且让设备在没有联网的情况之下也能够使用相应的AI能力,这样AI的覆盖变得更为全面。

  AI的实现包括两个环节:训练、推理。所以根据承担任务的不同,AI芯片可以分为:用于构建神经网络模型的训练芯片,利用神经网络模型进行推理预测的推理芯片。

  训练,是指通过大数据训练出一个复杂的神经网络模型,即用大量标记过的数据来“训练”相应的系统,使之可以适应特定的功能。训练需要极高的计算性能,需要较高的精度,需要能处理海量的数据,需要有一定的通用性,以便完成各种各样的学习任务。

  推理,是指利用训练好的模型,使用新数据推理出各种结论。即借助现有神经网络模型进行运算, 利用新的输入数据来一次性获得正确结论的过程。也有叫做预测或推断。

  训练芯片,注重绝对的计算能力,而推断芯片更注重综合指标, 单位能耗算力、时延、成本等都要考虑。

  训练将在很长一段时间里集中在云端,推理的完成目前也主要集中在云端,但随着越来越多厂商的努力,很多的应用将逐渐转移到终端。

  推理相对来说对性能的要求并不高,对精度要求也要更低,在特定的场景下,对通用性要求也低,能完成特定任务即可,但因为推理的结果直接提供给终端用户,所以更关注用户体验方面的优化。

  以部署位置(云端、终端)和承担任务(训练、推理)为横纵坐标,可以清晰的划分出AI芯片的市场领域,上表,列出了适用于各个市场的技术路线、云端训练

  CPU由于计算单元少,并行计算能力较弱,不适合直接执行训练任务,因此训练一般采用“CPU+加速芯片”的异构计算模式。目前NVIDIA的GPU+CUDA计算平台是最成熟的AI训练方案,除此还有两种方案:

  如果说云端训练芯片是NVIDIA一家独大,那云端推理芯片则是百家争鸣,各有千秋。

  自动驾驶、VR、智能家居设备、各种IoT设备等设备的终端推理AI芯片方面,目前多采用ASIC,还未形成一家独大的态势。终端的数量庞大,而且需求差异较大。AI芯片厂商可发挥市场作用,面向各个细分市场,研究应用场景,以应用带动芯片。

  目前,作为加速应用的AI芯片,主要的技术路线有三种:GPU、FPGA、ASIC

  深度学习的算法还是有比较大的区别。当然,GPU非常适合做并行计算,也可以用来给AI加速。GPU因良好的矩阵计算能力和并行计算优势,最早被用于AI计算,在数据中心中获得大量应用。GPU采用并行架构,超过80%部分为运算单元,具备较高性能运算速度。相比较下,CPU仅有20%为运算单元,更多的是逻辑

  逻辑控制与串行运算,而GPU擅长大规模并行运算。GPU最早作为深度学习算法的芯片被引入人工智能领域,因其良好的浮点计算能力适用于矩阵计算,且相比CPU具有明显的数据吞吐量和并行计算优势。2011年谷歌大脑率先应用GPU芯片,当时12颗英伟达的GPU可以提供约等于2000颗CPU的深度学习

  人工智能领域最普遍最成熟的智能芯片,应用于数据中心加速和部分智能终端领域,在深度学习的训练阶段其性能更是无所匹敌。在深度学习

  云计算数据中心里),GPU是当仁不让的第一选择。目前GPU的市场格局以英伟达为主(超过70%),AMD为辅,预计未来几年内GPU仍然是深度学习训练市场的第一选择。另外,GPU无法单独工作,必须由CPU进行控制调用才能工作。CPU可单独作用,处理复杂的逻辑

  FPGA可以采用OpenCL等更高效的编程语言,降低了硬件编程的难度,还可以集成重要的控制功能,整合系统模块,提高了应用的灵活性,与GPU相比,FPGA具备更强的平均计算能力和更低的功耗。

  云计算架构形成CPU+FPGA的混合异构中相比GPU更加的低功效和高性能,适用于高密度计算,在深度学习的推理阶段有着更高的效率和更低的成本,使得全球科技巨头纷纷布局云端FPGA生态。国外包括亚马逊

  微软都推出了基于FPGA的云计算服务,而国内包括腾讯云、阿里云均在2017年推出了基于FPGA的服务,百度大脑也使用了FPGA芯片。中国刚刚被Xilinx收购的深鉴科技也是基于FPGA来设计深度学习的加速器架构,可以灵活扩展用于服务器端和嵌入式端。3、ASIC

  ASIC与GPU和FPGA不同,GPU和FPGA除了是一种技术路线之外,还是实实在在的确定的产品,而ASIC就是一种技术路线或者方案,其呈现出的最终形态与功能也是多种多样的。

  算法加速,其中表现最为突出的是Google的TPU。TPU比同时期的GPU或CPU平均提速15~30倍,能效比提升30~80倍。相比FPGA,ASIC芯片具备更低的能耗与更高的计算效率。但是ASIC研发周期较长、商业应用风险较大等不足也使得只有大企业或背靠大企业的团队愿意投入到它的完整开发中。

  寒武纪开发的Cambricon系列芯片受到广泛关注。华为的麒麟980处理器所搭载的NPU就是寒武纪的处理器。二、AI芯片技术路线、短期:GPU仍延续AI芯片的领导地位,FPGA增长较快

  GPU短期将延续AI芯片的领导地位。目前GPU是市场上用于AI计算最成熟应用最广泛的通用型芯片,在算法技术和应用层次尚浅时期,GPU由于其强大的计算能力、较低的研发成本和通用性将继续占领AI芯片的主要市场份额。GPU的领军厂商英伟达仍在不断探寻GPU的技术突破,新推出的Volta架构使得GPU一定程度上克服了在深度学习

  FPGA是目前增长点,FPGA的最大优势在于可编程带来的配置灵活性,在目前技术与运用都在快速更迭的时期具有巨大的实用性,而且FPGA还具有比GPU更高的功效能耗比。企业通过FPGA可以有效降低研发调试成本,提高市场响应能力,推出差异化产品。在专业芯片发展得足够重要之前,FPGA是最好的过渡产品,所以科技巨头纷纷布局云计算

  逻辑控制上也更复杂一些,在面临需求通用型AI计算的应用方面具有较大优势。第二条路则是通型人工智能平台,GPU由于设计方面,通用性强,性能较高,应用于大型人工智能

  2) FPGA适用变化多的垂直细分行业FPGA具有独一无二的灵活性优势,对于部分市场变化迅速的行业非常适用。同时,FPGA的高端器件中也可以逐渐增加DSP、ARM核等高级模块,以实现较为复杂的算法。FPGA以及新一代ACAP芯片,具备了高度的灵活性,可以根据需求定义计算架构,开发周期远远小于设计一款专用芯片,更适用于各种细分的行业。ACAP的出现,引入了AI核的优点,势必会进一步拉近与专用芯片的差距。随着 FPGA 应用生态的逐步成熟,FPGA 的优势也会逐渐为更多用户所了解。

  人工智能算法进行定制,其发展前景看好。ASIC是AI领域未来潜力较大的芯片,AI算法厂商有望通过算法嵌入切入该领域。ASIC具有高性能低消耗的特点,可以基于多个人工智算法进行定制,其定制化的特点使其能够针对不同环境达到最佳适应,在深度学习的训练和推理阶段皆能占据一定地位。目前由于人工智能

  人工智能技术、平台和终端的发展达到足够成熟度,人工智能应用的普及程使得专用芯片能够达到量产水平,此时ASIC芯片的发展将更上一层楼。此外,AI算法提供商也有望将已经优化设计好的算法直接烧录进芯片,从而实现算法IP的芯片化,这将为AI芯片的发展注入新的动力。

  亚马逊以及百度、阿里、腾讯在内的互联网巨头相继入局,预计到2020年全球市场规模将超过100亿美元,其中中国的市场规模近25亿美元,增长非常迅猛,发展空间巨大。

  边缘计算终端设备,包括三星、苹果、华为、高通、联发科在内的手机芯片厂商纷纷推出或者正在研发专门适应AI应用的芯片产品。另外,也有很多初创公司加入这个领域,为包括智能手机在内的众多类型边缘计算

  寒武纪、地平线等。传统的IP厂商,包括ARM、Synopsys、Cadence等公司也都为手机、平板电脑、智能摄像头、无人机、工业和服务机器人、智能音箱等边缘计算设备开发专用IP产品。此外在终端应用中还蕴藏着IoT这一金矿,AI芯片只有实现从云端走向终端,才能真正赋予“万物智能”。二、四大场景的芯片赛道1、数据中心

  下游推理端更接近终端应用,更关注响应时间而不是吞吐率,需求更加细分,除了主流的GPU芯片之外,下游推理端可容纳FPGA、ASIC等芯片。竞争态势中英伟达依然占大头,但随着AI的发展,FPGA的低延迟、低功耗、可编程性(适用于传感器数据预处理工作以及小型开发试错升级迭代阶段)和ASIC的特定优化和效能优势(适用于在确定性执行模型)将凸显出来。

  自动驾驶对芯片算力有很高的要求, 而受限于时延及可靠性,有关自动驾驶的计算不能在云端进行,因此终端推理芯片升级势在必行。根据丰田公司的统计数据,实现L5级完全自动驾驶

  自动驾驶平台测算,差不多需要15块PX2车载计算机,才能满足完全自动驾驶的需求。目前,自动驾驶上游系统解决方案逐渐形成英伟达与英特尔-Mobileye联盟两大竞争者。除了上述两大主力汽车芯片竞争方,百度虽然与英伟达合作密切(Apollo开放平台从数据中心到自动驾驶

  自动驾驶。3、安防AI正在以极其声势浩大的节奏全面“入侵”整个安防产业。作为这一波人工智能

  地平线等AI芯片公司提供的安防AI芯片属于协处理器,需要搭配其他公司的摄像机SoC芯片使用。而海思的安防AI芯片本身就是安防摄像机SoC芯片,只是新加入了AI模块这也是海思安防AI芯片的最大竞争力。

  高通很有可能在手机AI赛道延续优势地位。近日发布的骁龙855被称为当前最强AI芯片,比起苹果A12、华为麒麟980,性能提升1倍,并将成为全球第一款商用5G芯片。

  在AI芯片领域,国外芯片巨头占据了绝大部分市场份额,不论是在人才聚集还是公司合并等方面,都具有领先优势。尤其是美国巨头企业,凭借芯片领域多年的领先地位,迅速切入AI领域,积极布局,四处开花,目前处于引领产业发展的地位,并且在GPU和FPGA方面是完全垄断地位。国内AI芯片公司多为中小型初创公司,在一些细分市场也有建树,诞生了多个独角兽企业。

  英伟达还将联合芯片巨头ARM打造IoT设备的AI芯片专用IP,这款机器学习IP集成到ARM的Project Trillium平台上,以实现机器学习

  2、Intel 英特尔英特尔作为传统PC芯片的老大,也在积极向PC以外的市场转型。

  自动驾驶技术公司Mobileye,以及机器视觉公司 Movidius和为自动驾驶

  自动驾驶等重要领域布局扎实。3、Google 谷歌Google在2016年宣布独立开发一种名为TPU的全新处理系统。在2016年3月打败了李世石和2017年5月打败了柯杰的的AlphaGo,就是采用了谷歌的TPU系列芯片。

  机器学习应用而设计的专用芯片。通过降低芯片的计算精度,减少实现每个计算操作所需的晶体管数量,从而能让芯片的每秒运行的操作个数更高,这样经过精细调优的机器学习

  2018年3月Google I/O大会推出TPU3.0。据官方数据,TPU3.0的性能是TPU2.0的八倍,高达 100 petaflops。Cloud TPU是谷歌设计的硬件加速器,为加速、拓展特定tensorflow机器学习workload而优化。每个TPU里内置了四个定制ASIC,单块板卡的计算能力达每秒180 teraflops,高带宽内存有64GB。这些板卡既能单独使用,也可通过超高速专用网络连接从而形成“TPU pod”。谷歌已在谷歌云(GCP)开放Cloud TPU的计算能力,帮助机器学习

  机器学习推理,或者也可以与Google Cloud配对以创建完整的云端到边缘机器学习堆栈。

  4、Xilinx 赛灵思2018年3月,赛灵思宣布推出一款超越FPGA功能的新产品ACAP(自适应计算加速平台)。其核心是新一代的FPGA架构。10月,发布最新基于7nm工艺的ACAP平台的第一款处理器Versal。其使用多种计算加速技术,可以为任何应用程序提供强大的异构加速。Versal Prime系列和Versal AI Core系列产品也将于 2019 年推出。

  但是,中国在FPGA、GPU领域缺乏有竞争力的原创产品,只是基于FPGA/GPU做进一步开发,这主要与我国在芯片领域一直缺乏关键核心自主技术有关,FPGA/GPU的技术壁垒已很高,很难有所突破。

  寒武纪创立于2016年3月,是中科院孵化的高科技企业。2018年5月,寒武纪

  寒武纪MLU100 芯片,为云端推理提供强大的运算能力支撑。等效理论计算能力高达128 TOPS,支持4通道64 bit ECCDDR4内存,并支持多种容量。

  寒武纪第三代机器学习专用芯片,使用TSMC 7nm工艺生产尊龙凯时中国官方网站,其8位运算效能比达 5Tops/watt(每瓦 5 万亿次运算)。寒武纪

  深度学习模型,又进一步支持了SVM、K-NN、K-Means、决策树等经典机器学习算法的加速。这款芯片支持帮助终端设备进行本地训练,可为视觉、语音、自然语言处理等任务提供高效计算平台。寒武纪也推出了面向开发者的寒武纪人工智能

  2、华为海思 Hisilicon海思半导体成立于2004年10月,是华为集团的全资子公司。

  神经网络模型方面有得天独厚的优势;新一代的麒麟980用于最新的Mate20系列和荣耀Magic 2。二者均采用寒武纪

  华为近期提出了全栈全场景AI解决方案,发布了两款AI芯片,昇腾910和昇腾310。昇腾910是目前单芯片计算密度最大的芯片,计算力远超谷歌及英伟达,而昇腾310芯片的最大功耗仅8W,是极致高效计算低功耗AI芯片。3、

  地平线月,是一家注重软硬件结合的AI初创公司,由Intel、嘉实资本、高瓴资本领投。2017年12月,地平线自主设计研发了中国首款嵌入式

  视觉芯片旭日1.0和征程1.0。旭日1.0是面向智能摄像头的处理器,具备在前端实现大规模人脸检测跟踪、视频结构化的处理能力,可广泛用于智能城市、智能商业等场景。

  征程1.0是面向自动驾驶的处理器,可同时对行人、机动车、非机动车、车道线交通标识等多类目标进行精准的实时监测和识别,实现FCW/LDW/JACC等高级别辅助驾驶功能。

  今年又推出了基于旭日(Sunrise)2.0的架构(BPU2.0,伯努利架构)的XForce边缘AI计算平台,其主芯片为Intel A10 FPGA,典型功耗35W,可用于视频人脸识别、人体分割、肢体检测等功能。

  比特大陆成立于2013年10月,是全球第一大比特币矿机公司,目前占领了全球

  矿机 70%以上的市场。并已将业务拓展至AI领域,于2017年推出云端AI芯片BM1680,支持训练和推断。目前已推出第二代产品BM1682,相较上一代性能提升5倍以上。BM1880是比特大陆首款面向边缘端计算的低功耗AI协处理器,采用28nm工艺,ARM A53双核架构,RISC-V CPU,其典型功耗2W,int 8精度算力能够达到1Tops。

  比特大陆提供端云一体化的AI解决方案,与终端AI芯片不同,比特大陆的云端AI芯片将不会单独发售,只搭载在板卡、云服务器中提供给合作伙伴。比特大陆将其AI芯片落地产业拓展到了四大类,分别是:安防、园区、智慧城市、互联网。

  全球互联网巨头纷纷高调宣布进入半导体行业,阿里、微软、Google、Facebook、

  等都宣布在芯片领域的动作。当互联网巨头开始进入芯片市场时,会对芯片行业产生巨大的影响。首先,互联网巨头追求硬件能实现极致化的性能以实现差异化用户体验用来吸引用户。在摩尔定律即将遇到瓶颈之际,想要追求极致体验需要走异构计算,自己定制化芯片的道路,光靠采购传统半导体厂商的芯片,已经没法满足互联网巨头对于硬件的需求,至少在核心芯片部分是这样。因此,Facebook、Google、阿里等互联网巨头都是异构计算的积极拥护者,为了自己的硬件布局或计划设计芯片,或已经开始设计芯片。这么一来,原来是半导体公司下游客户的互联网公司现在不需要从半导体公司采购芯片了,这样的产业分工变化会引起行业巨变。

  其次,互联网巨头制造硬件的目的只是为了吸引用户进入自己的生态,使用自己的服务,其最终盈利点并不在贩卖硬件上而是在增值服务上。因此,互联网巨头在为了自己的硬件设计芯片时可以不计成本。从另一个角度来说,一旦自己设计核心芯片的互联网公司进入同一个领域,那些靠采购半导体公司标准芯片搭硬件系统的公司,就完全没有竞争力了,无论是从售价还是性能,拥有自己核心芯片的互联网巨头都能实施降维打击。一旦这些硬件公司失去竞争力,那么依赖于这些客户的半导体公司的生存空间又会进一步被压缩。总而言之,互联网巨头进入芯片领域,首先出于性能考虑不再从半导体公司采购核心芯片尊龙凯时中国官方网站,这冲击了传统行业分工,使传统芯片公司失去了一类大客户;另一方面互联网巨头的生态式打法可以让自研硬件芯片不考虑成本,这又冲击了那些从半导体公司采购芯片的传统硬件公司,从而进一步压缩了半导体公司的市场。在这两个作用下,半导体芯片公司的传统经营模式必须发生改变才能追上新的潮流。

  目前,半导体行业领域的分工,大概可以分为定义、设计、设计定案、制造等几个环节。

  今天的半导体行业,最为大家熟知的是Fabless模式,即芯片设计公司负责定义、设计和设计定案,而制造则是在提供代工的Fab完成;如

  ,是Fabless的典型代表。在互联网巨头入局半导体行业后,又出现了一种新的模式,即互联网公司负责定义芯片、完成小部分设计、并花钱完成设计定案流片,设计服务公司负责大部分设计,而代工厂负责芯片制造。这种新模式可以称为Designless-Fabless模式。

  历史上,半导体公司从传统的IDM走到Fabless模式,主要是因为Fab开销过高,成为了半导体公司发展的包袱,而代工厂则提供了一个非常灵活的选项。今天,互联网公司入局半导体后走Designless-Fabless模式,把大量设计外包,则主要是因为时间成本。互联网巨头做芯片,追求的除了极致性能之外,还有快速的上市时间。对于他们来说,如果要像传统半导体公司一样,需要从头开始培养自己的前端+后端设计团队,从头开始积累模块IP,恐怕第一块芯片上市要到数年之后。这样的节奏,是跟不上互联网公司的快速迭代节奏的。

  那么如何实现高性能加快速上市呢?最佳方案就是这些巨头自己招募芯片架构设计团队做芯片定义,用有丰富经验的业界老兵来根据需求定制架构以满足性能需求,而具体的实现,包括物理版图设计甚至前端电路设计都可以交给设计服务公司去做。半导体芯片的一个重要特点就是细节非常重要,ESD、散热、IR Drop等一个小细节出错就可能导致芯片性能大打折扣无法达到需求。因此,如果把具体设计工作交给有丰富经验的设计服务公司,就可以大大减少细节出错的风险,从而减小芯片需要重新设计延误上市时间的风险。

  随着分工的进一步细化,原先起辅助作用的设计服务公司,将越来越重要,能够与互联网巨头产生互补效应。不少半导体公司也注意到了设计服务的潮流,并开始向设计服务靠拢。联发科前一阵高调公开设计服务业务,就是半导体公司转向的重要标志。

  对于国内的AI芯片初创公司来说,善用这种Designless-Fabless模式,对于缩短产品研发周期,提升产品设计水平,都有很大帮助。

  其次,现在的人工智能算法都仅仅只是针对于单个应用进行研发的,并没有能够覆盖全方位,所以鲜有杀手级别的AI应用。

  在发展过程中,AI芯片首要解决的问题就是要适应现在人工智能算法的演进速度,并且要进行适应,这样才能够保证匹配发展。

  此外,AI芯片也要适当的对架构进行创新兼容,让其能够兼容适应更多的应用,这样能够开发出更好的包容性应用。目前全球

  产业还处在高速变化发展中,广泛的行业分布为人工智能的应用提供了广阔的市场前景,快速迭代的算法推动

  时代的战略制高点,但由于目前的 AI算法往往都各具优劣,只有给它们设定一个合适的场景才能最好地发挥其作用,因此,确定应用领域就成为发展AI芯片的重要前提。从芯片发展的大趋势来看,现在还是AI芯片的初级阶段。无论是科研还是产业应用都有巨大的创新空间。从确定算法、应用场景的AI加速芯片向具备更高灵活性、适应性的通用智能芯片发展是技术发展的必然方向。未来几年AI芯片产业将持续火热,公司扎堆进入,但也很可能会出现一批出局者,行业洗牌,最终的成功与否则将取决于各家公司技术路径的选择和产品落地的速度。二、半导体行业周期:下一个黄金十年分析半导体市场的历史(如下图),我们会看到典型的周期性现象,即每个周期都会有一个明星应用作为引擎驱动半导体市场快速上升,而在该明星应用的驱动力不足时半导体市场就会陷入原地踏步甚至衰退,直到下一个明星应用出现再次引领增长。这些明星应用包括90年代的PC,21世纪第一个十年的手机移动通信,以及2010年前后开始的智能手机。在两个明星应用之间则可以看到明显的半导体市场回调,例如1996-1999年之间那段时间处于PC和手机之间的青黄不接,而2008-2009年则是传统移动通信和智能手机之间的调整。

  半导体过去的十年,是以iPhone为首的智能手机带动的黄金十年。现在的半导体行业,即将进入两个明星应用出现之间的调整期。谁将成为引领半导体下一个黄金十年的明星应用?

  半导体行业是一个十分看重出货量的领域,只有应用的芯片出货量足够大时,这个市场才能容下足够多的竞争公司,从而驱动半导体行业。有些应用市场总额很大,但是其走的是高售价高利润率的模式,芯片出货量反而不大,这样的话其对于半导体行业的驱动作用就有限。

  除了出货量之外,另一个重要因素是应用的技术驱动力,即该应用是否对于半导体技术的更新有着强烈而持续的要求,因为只有当半导体技术一直在快速更新迭代时,半导体行业才能是一个高附加值的朝阳行业,才能吸引最好的人才以及资本进入,否则一旦半导体技术更新缓慢,整个行业就会陷入僵化的局面。PC时代的PC机就是对半导体有强烈技术驱动力的典型,PC上的多媒体应用对于处理器速度有着永不满足的需求,而这又转化成了对于处理器相关半导体技术强烈而持续的更新需求,直接推动了摩尔定律和半导体行业在90年代的黄金时期。反之,有一些应用的出货量很大但是其对于半导体的技术驱动力并不大,例如传统家电中的主控MCU芯片,这些MCU芯片出货量很大,但是在技术上并没有强烈的进步需求,不少传统家电多年如一日一直在用成熟半导体工艺实现的8位MCU,那么这样的应用对于半导体来说实质上引领作用也比较有限。应用出货量决定了半导体行业的横向市场规模,而技术驱动力则决定了半导体技术的纵向进化动能。回顾之前几个成为半导体行业引擎的明星应用,无不是出货量和技术驱动力双双领先。PC出货量(在当时)很大,且是当年摩尔定律黄金时代的主推者;移动手机在出货量很大的同时还推动了CMOS/III-V族工艺射频相关电路设计技术的大幅进展;智能手机则更是驱动了多项半导体芯片相关技术的发展,例如2.5D高级封装,用于3D识别的激光模组,触摸屏和指纹相关芯片等,而一个智能手机中包含的半导体芯片数量从射频前端、存储器到惯性传感器数量也极多,因此其能撑起半导体的上一个黄金十年。所以,能撑起下一个半导体黄金十年的应用,必然在芯片出货量和技术驱动力,这两个维度上都有强劲的动力。

  只存在于云端的云AI芯片,是作为一种基础设施出现的,归根到底是服务2B客户,因此云AI芯片的出货量相比智能手机这样的智能设备要小很多。技术驱动力很强,但是出货量相对较小。

  能够起到支撑作用的,推测应该是在当前智能手机基础上发展起来的下一代个人智能设备,可能是以AI手机的形势呈现。手机首先出货量很大,几乎人手一个;此外AI手机上运行的应用程序的不断更新迭代对于手机中的芯片技术提出了强烈而持续的技术进化需求,因此其对于半导体行业的技术驱动力极强。

  这类AI芯片属于神经拟态芯片,从结构层面去模拟大脑,参考人脑神经元结构和人脑感知认知方式来设计芯片,俗称“类脑芯片”。

  类脑芯片在架构上直接通过模仿大脑结构进行神经拟态计算,完全开辟了另一条实现人工智能的道路,而不是作为人工

  或深度学习的加速器存在。类脑芯片可以将内存、CPU和通信部件完全集成在一起,实现极高的通信效率和极低的能耗。目前该类芯片还只是小规模研究与应用,低能耗的优势也带来预测精度不高等问题,没有高效的学习算法支持使得类脑芯片的进化较慢,还不能真正实现商用。

  目前神经拟态芯片的设计方法主要分为非硅和硅技术。非硅主要指采用忆阻器等新型材料和器件搭建的神经形态芯片,还处于研究阶段。硅技术包括模拟和数字两种。模拟集成电路的代表是瑞士苏黎世联邦理工学院的ROLLS芯片和海德堡大学的BrainScales芯片。数字集成电路又分为异步同步混合和纯同步两种。其中异步(无全局时钟)数字电路的代表是IBM的TrueNorth,纯同步的数字电路代表是清华大学的“天机”系列芯片。另外,对于片上自学习能力,最近Intel推出了Loihi芯片,带有自主片上学习能力,通过脉冲或尖峰传递信息,并自动调节突触强度,能够通过环境中的各种反馈信息进行自主学习。中国研究类脑芯片的企业还有:西井科技,灵汐科技,深思创芯等。

  计算架构的芯片,兼具处理器的通用性和ASIC的高性能与低功耗,是未来通用AI芯片的方向之一。可重构计算技术允许硬件架构和功能随软件变化而变化,兼具处理器的通用性和ASIC的高性能和低功耗,是实现软件定义芯片的核心,被公认为是突破性的下一代集成电路技术。清华大学微电子学研究所设计的AI芯片Thinker,采用可

  和递归神经网络等多种AI算法。值得一提的是,DARPA在电子振兴计划(ERI)中提出了三个支柱:材料、架构、设计,用于支撑美国2025 - 2030年之间的国家电子设计能力。这其中每一个方向都设置了一个课题,其中一个课题在架构中提出了软件定义硬件的概念,也就是 Software defines Hardware。ERI中讲道:所谓要建立运行时可以实时重新配置的硬件和软件,他们具备像ASIC一样的性能,而没有牺牲数据密集型计算的可编程性。现今的AI芯片在某些具体任务上可以大幅超越人的能力,但究其通用性与适应性,与人类智能相比差距甚远,大多处于对特定算法的加速阶段。而AI芯片的最终成果将是通用AI芯片,并且最好是淡化人工干预的自学习、自适应芯片。因此未来通用 AI芯片应包含以下特征。1)可编程性:适应算法的演进和应用的多样性。

  5)高能量效率:能耗比大于5 Tops/W(即每瓦特进行5×10^12次运算)。

  6)低成本低功耗:能够进入物联网设备及消费类电子中。7)体积小:能够加载在移动终端上。

  架构,大家可能觉得FPGA早就可以这样做了,但实际上FPGA有很多局限性,包括以下这些:

  静态编程:一旦配置完成,不可更改。如果要改变 FPGA 的功能,只能下电或在线重新载入配置信息;

  [1] AI芯片和传统芯片有何区别?,EETOP,2018-7-20[2] AI芯片的“战国时代”:计算力将会驶向何方?,AI科技大本营,2018-11-6

  [3] 16位AI芯片玩家疯狂涌入!安博会成AI芯片阅兵场,智东西,2018-10-24[4] 五大趋势看透2018安博会!AI芯片扎堆涌入,人脸识别成小儿科,智东西,2018-10-23

  [5] 比特大陆推首款低功耗边缘AI芯片 主攻安防场景,智东西,2018-10-17

  [7] 互联网巨头入局芯片,将给半导体产业带来深远变化尊龙凯时中国官方网站,矽说,2018-6-24

  [10] 一文看懂所有类型的AI芯片!(附全球最顶尖AI芯片的企业名录),IT大佬,2018-6-11

  [11] AI芯片:一块价值146亿美元的蛋糕,被三大门派四大场景瓜分,IT大佬,2017-12-06[12] 250多位专家对AI芯片未来发展的预测,半导体行业观察,2018-9-30

  [13] 【世经研究】AI芯片行业发展正当时,世经未来,2018-7-11

  [16] 华为大转型!AI战略重磅发布,两颗AI芯片问世,算力超谷歌英伟达!,新智元,2018-10-10

  [17] 华为秘密“达芬奇计划”首曝光!自研AI芯片或重创英伟达,新智元,2018-7-13

  已生变数,中国AI芯片抢跑者前路未明,DeepTech深科技,2018-10-11

  [20] 清华魏少军:大部分AI芯片创业者将成为这场变革中的先烈,AI科技大本营,2018-3-25[21]

  芯片行业深度研究,天风证券,2017-11-29[22] 碾压华为苹果的AI芯片问世!

  ,图灵机器人-人才战略官,前腾讯产品经理,6年AI实战经验,9年互联网背景。

  垂直于“AI产品经理”的第一自媒体,微信公众号/知乎/人人都是产品经理等平台ID均为“hanniman”,关注人数近3万;

  行业内第一个AI产品经理的成长交流社区-饭团“AI产品经理大本营”的创建者,已运营1年半,成员700人;

  高通公司(英语:Qualcomm,NASDAQ:QCOM)是一个位于美国加州圣地亚哥的无线电通信技术研发公司,由加州大学圣地亚哥分校教授厄文·马克·雅克布和安德鲁·维特比创建,于1985年成立。两人此前曾共同创建Linkabit。 高通公司是全球3G、4G与5G技术研发的领先企业,目前已经向全球多家制造商提供技术使用授权,涉及了世界上所有电信设备和消费电子设备的品牌。根据iSuppli的统计数据,高通在2007年度一季度首次一举成为全球最大的无线半导体供应商,并在此后继续保持这一领导地位。其骁龙移动智能处理器是业界领先的全合一、全系列移动处理器,具有高性能、低功耗、逼真的多媒体和全面的连接性。目前公司的产品和业务正在变革医疗、汽车、物联网、智能家居、智慧城市等多个领域。

  微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

  深鉴科技成立于2016年3月,定位为深度学习硬件解决方案公司,将以自主研发的深度压缩与深度学习处理器(DPU)为核心,打造最好用的解决方案和最高效的整体系统,提供硬件+芯片+软件+算法的完整方案,方便所有人使用。同时,深鉴主要瞄准智慧城市和数据中心两大市场,可帮助用户为多种智能安防场景打造稳定高效的解决方案。

  以“赋能机器,让人类生活更安全、更美好”为使命,地平线是行业领先的高效能智能驾驶计算方案提供商。作为推动智能驾驶在中国乘用车领域商业化应用的先行者,地平线致力于通过软硬结合的前瞻性技术理念,研发极致效能的硬件计算平台以及开放易用的软件开发工具,为智能汽车产业变革提供核 心技术基础设施和开放繁荣的软件开发生态,为用户带来无与伦比的智能驾驶体验。

  深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

  来源:LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

  从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

  机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

  来源:Mitchell, T. (1997). Machine Learning. McGraw Hill.

  比特币是一种用去中心化、全球通用、不需第三方机构或个人,基于区块链作为支付技术的电子加密货币。比特币由中本聪于2009年1月3日,基于无国界的对等网络,用共识主动性开源软件发明创立。比特币也是目前知名度与市场总值最高的加密货币。 任何人皆可参与比特币活动,可以通过称为挖矿的电脑运算来发行。

  广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

  边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

  来源:Edge Computing: Vision and Challenges

  (人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

  卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

  (人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

  自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

  来源:What is Automatic Speech Recognition?

  自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

下一篇:深入理解AI芯片的核心尊龙凯时中国官方网站技术
上一篇:尊龙凯时中国官方网站OpenAI自研芯片进展曝光!百万年薪挖角谷歌

咨询我们

输入您的疑问及需求发送邮箱给我们